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Abstract
For ensembles of 2 × 2 real symmetric matrices, the normalized spacing
distributions P(S) form a family whose parameter space is the unit cube
with coordinates determined by the means and variances of the diagonal and
off-diagonal elements. The cube contains a variety of spacing distributions
that are calculated analytically; they include the Wigner–Poisson transition,
distributions with singularities and Gaussians. Unfolding is superfluous for
2 × 2 matrices, but it can be implemented, giving rise to a further variety of
spacing distributions, some surprising.

PACS numbers: 02.70.rr, 02.65.−w, 05.45.mt

1. Introduction

2 × 2 matrices are useful models for many phenomena, including lens and polarization optics
[1, 2], geometric phases [3], PT symmetry [4], quantum transitions [5–7], decoherence [8] and
localization [9, 10]. Sometimes, the physics involves individual matrices, but more frequently
insight is gained by considering families of matrices, for example those surrounding and
including a degenerate matrix, where, for two parameters, the spectrum possesses a conical
(diabolical) singularity [11]. In addition, average short-range spectral properties of statistical
ensembles of N × N matrices can be illuminated by 2 × 2 examples [12].

Here we will study families of ensembles of 2 × 2 real symmetric matrices whose
elements are independently Gauss-distributed, and we will calculate the unique fluctuation
statistic for this family, namely the probability distribution P(S) of the difference between the
two eigenvalues, normalized so that S is measured in units of the mean spacing. In the most
familiar individual ensemble in this family, the elements have zero mean and the variance of
the diagonal elements is twice that of the off-diagonals; this represents the 2 × 2 Gaussian
orthogonal ensemble (GOE), and the spacing distribution, known as the Wigner surmise [12]
of random-matrix theory, is a good approximation to that for N × N matrices when N � 2.

In the generalized ensembles we consider here, the diagonal and off-diagonal elements
have arbitrary means and variances, and these quantities are the parameters of the family. We

1751-8113/09/485102+13$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/48/485102
http://stacks.iop.org/JPhysA/42/485102


J. Phys. A: Math. Theor. 42 (2009) 485102 M V Berry and P Shukla

will find that there are three such parameters, and individual ensembles correspond to points
in a unit cube. In section 2 we calculate P(S) for any point in the cube, and in section 3 we
explore special cases, corresponding to particular edges and faces.

For a spectrum of just two eigenvalues, the unfolding procedure that is necessary for
larger matrices [13] is superfluous, because P(S) can be calculated directly. Nevertheless,
unfolding is interesting to explore for 2 × 2 matrices (section 4), not only for comparison with
larger matrices but also because it leads to some unexpected results: for traceless matrices,
the unfolded spacing distribution is uniform on 0 < S < 2, whatever the statistics of the matrix
elements.

There are several reasons for studying the 2 × 2 model. (i) The matrices in these ensembles
are caricatures of larger matrices more general than those of the GOE that have been widely
applied in condensed-matter physics [14–17] and in studies of complexity [18–22]. (ii) It
gives the simplest models for the spacing distribution, which is the statistic most commonly
measured experimentally. (iii) Only for 2 × 2 matrices it is possible to carry out detailed
analytical calculations. (iv) It is possible to study the complete parameter space, in contrast
to larger matrices where there are many more parameters. (v) Even this simple generalization
of the Wigner surmise displays a variety of spacing distributions.

In the following, we denote all probability distributions by P, distinguished by the variables
appearing in its argument; thus P(a) da = P(b) db.

2. Calculation of the spacing distribution

The most general real symmetric matrix is

M = 1

2

(
T + X Y

Y T − X

)
. (2.1)

The spacing of the two eigenvalues λ+ and λ−, namely

� = λ+ − λ− =
√

X2 + Y 2, (2.2)

does not involve the trace T, which therefore plays no part in the direct calculation of the
spacing distribution carried out in this section and the next. However, T will reappear in
section 4 when we discuss the distribution of spacings for unfolded eigenvalues.

If we choose the elements X and Y to be Gauss-distributed and uncorrelated, with means
and variances

X̄, VX, Ȳ , VY , (2.3)

these four quantities are the parameters of the ensemble before normalization.
The distribution of unnormalized spacings is

P(�; X̄, Ȳ , VX, VY ) = 1

2π
√

VXVY

∫ ∞

−∞
dX

∫ ∞

−∞
dYδ(� −

√
X2 + Y 2)

× exp

{
−

(
(X − X̄)2

2VX

+
(Y − Ȳ )2

2VY

)}
. (2.4)

It is convenient to introduce polar coordinates for X, Y, and integrate over the radial coordinate.
Then we scale to introduce the following natural dimensionless parameters and new temporary
spacing variable:

ξ ≡ X̄

(VXVY )1/4
, η ≡ Ȳ

(VXVY )1/4
, α ≡

√
Vx

VY

, D ≡ �

(VXVY )1/4
. (2.5)
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In terms of D, the resulting spacing distribution now depends on only three parameters:

P(D; ξ, η, α) = D

2π
exp

(
−

(
ξ 2

2α
+

η2α

2

))

×
∫ 2π

0
dθ exp

(
−D2

2

(
cos2 θ

α
+ α sin2 θ

)
+ D

(
ξ

cos θ

α
+ αη sin θ

))
. (2.6)

Finally, we scale D by the mean spacing, which is

D̄(ξ, η, α) =
∫ ∞

0
dDDP(D) =exp

(−(
ξ 2

2α
+ αη2

2

))
2
√

2π

×
∫ 2π

0
dθ

[
A + (1 + A2) exp

(
1
2A2

)(
1 + erf

(
A√

2

))]
(

cos2 θ
α

+ α sin2 θ
)3/2 , (2.7)

where

A =
ξ

α
cos θ + αη sin θ√
cos2 θ

α
+ α sin2 θ

. (2.8)

Thus, the desired spacing distribution is

P (S; ξ, η, α) = S(D̄(ξ, η, α))2

2π
exp

(
−

(
ξ 2

2α
+

η2α

2

))

×
∫ 2π

0
dθ exp (F (θ; S, ξ, η, α)), (2.9)

where

F (θ; S, ξ, η, α) = S2(D̄(ξ, η, α))2

2

(
cos2 θ

α
+ α sin2 θ

)

+ SD̄ (ξ, η, α)

(
ξ

cos θ

α
+ αη sin θ

)
. (2.10)

The spacing distribution is invariant under each of the replacements ξ → −ξ, η →
−η, {α, ξ, η} → {α−1, η, ξ }. Incorporating these symmetries, the ranges of the three
parameters are

0 < ξ < ∞, 0 < η < ∞, 0 � α � 1, (2.11)

corresponding to an infinite square (ξ , η) slab with unit height (α). With coordinates tanh
ξ and tanh η, this parameter space becomes the unit cube (figure 1), in which each point
represents one of the generalized Gaussian ensembles.

3. Special cases

Case A. Both means zero (X̄ = Ȳ = 0), arbitrary variances

This is ξ = η = 0, so the only parameter is α (see figure 1). Equations (2.7) and (2.9)
simplify considerably; the quantity A in (2.8) is zero, and D̄ can be expressed in terms of
hypergeometric functions:

3
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tanhξ

tanhη

α

0

0

0

1

1

1

B

C

A

D

Wigner

Poisson

Figure 1. Parameter cube of the family of ensembles, indicating the special cases treated in
section 3.

D̄(α, 0, 0) = 1

2
√

2π

∫ 2π

0
dθ

1(
cos2 θ

α
+ α sin2 θ

)3/2

= 2
√

π

(α−1 + α)3/2 2F1

(
3

4
,

5

4
, 1,

(α−1 − α)2

(α−1 + α)2

)
≈

√
2

π
(α−1 + α) +

(π − 8/π)

(α−1 + α)
,

(3.1)

in which the approximation in the last member is exact as α → 0 and α → 1 and the error
never exceeds 1.5% over the entire range of α.

P(S) (equation (2.9)) is simple too: in terms of the Bessel function I0,

P(S;α, 0, 0) = SD̄(α, 0, 0)2 exp
{− 1

4S2D̄ (α, 0, 0)2 (α + 1/α)
}

× I0
(

1
4S2D̄(α, 0, 0)2(α − 1/α)

)
. (3.2)

This special case has been derived before [23], and described as the quadratic Rayleigh–Rice
distribution.

A familiar limiting case is where both variances are equal; then

P(S; 1, 0, 0) = π

2
S exp

(
−1

4
πS2

)
, (3.3)

reproducing the familiar Wigner surmise, displaying linear eigenvalue repulsion (as do all
the ensembles, except one that will be considered later in this section). The fact that
(3.3) corresponds to equal variances for the diagonal and off-diagonal elements might seem
unfamiliar. But if T in (2.1) has variance VT = VX = VY, the variance of the diagonal elements
is

Vdiag = VT +X = VT −X = VT + VX = 2VX, (3.4)

explaining the factor 2 in the usual formulations.
The opposite limit is α = 0, for which

P(S; 0, 0, 0) = 2

π
exp

(
− 1

π
S2

)
. (3.5)

Since this corresponds to a purely diagonal matrix, P(S; 0, 0, 0) is simply the distribution
of distances between two independent Gauss-distributed numbers, that is, the equivalent of

4
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Figure 2. Spacing distribution P(S; α, 0, 0) (equation (3.2)) for (a) α = 0 (Poisson), (b) α = 0.1,
(c) α = 0.3, (d) α = 1 (Wigner).

the Poisson distribution for 2 × 2 matrices, displaying no eigenvalue repulsion (the familiar
exponential distribution emerges for diagonal N × N matrices as N increases).

Thus, the spacing distribution (3.2) represents an interpolation between the Poisson and
Wigner ensembles, as illustrated in figure 2. By choosing a non-Gaussian ensemble for the
diagonal elements, it is possible [24, 25] to reproduce the familiar exponential form for the
Poisson distribution for large matrices, but for 2 × 2 matrices the exponential form has no
special status: only the lack of eigenvalue repulsion is significant.

Case B. Both variances equal (VX = VY ), arbitrary means

This is the α = 1 face of the parameter cube (see figure 1). The parameters ξ and η appear
only in the combination

ρ =
√

ξ 2 + η2, (3.7)

and (2.7) and (2.9) give

D̄(1,
√

ξ 2 + η2 = ρ) = 1

2

√
π

2
exp

(
−1

4
ρ2

) [
(2 + ρ2)I0

(
1

4
ρ2

)
+ ρ2I1

(
1

4
ρ2

)]
, (3.8)

and

P(S; 1,
√

ξ 2 + η2 = ρ) = SD̄(ρ)2 exp
{− 1

2 (ρ2 + S2D̄(ρ)2)
}
I0(SρD̄(ρ)). (3.9)

This looks similar to the quadratic Rayleigh–Rice distribution in (3.2) of case A but is in fact
very different (except for ρ = 0) because the Bessel function involves S rather than S2; it is
the ordinary Rice distribution.

Figure 3 shows P(S; 1,
√

ξ 2 + η2 = ρ) for several values of ρ. Now the transition is very
different: from Wigner at ρ = 0 via a Gaussian sharpening to a δ function:

P(S, 1,
√

ξ 2 + η2 = ρ → ∞) → ρ√
2π

exp
(− 1

2ρ2(S − 1)2
) → δ(S − 1). (3.10)

This limit is obvious, because if either mean is much larger than the common variance, then
the spacing distribution before normalization by the mean spacing is a Gaussian centred on
a large spacing, which when normalized gives P(S) as a narrow Gaussian centred on S = 1,
corresponding to a rigid spectrum.
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Figure 3. Spacing distribution P(S; 1,
√

ξ2 + η2 = ρ) (equation (3.9)) for (a) ρ = 0 (Wigner),
(b) ρ = 2, (c) ρ = 3, (d) ρ = 5.

Case C. One variance zero, arbitrary means

Without loss of generality we can choose VX as the zero variance. Then from (2.5) this case
corresponds to α = 0, ξ = η = ∞ (see figure 1). However, it is easier to return to (2.4) and
note the simplification that this case is simply X = X̄, i.e. the X distribution is a δ function, so

P(�) = 1√
2πVY

∫ ∞

−∞
dYδ(� −

√
X̄2 + Y 2) exp

{
− 1

2

(
(Y − Ȳ )2

VY

)}

= �(� − X̄)2�√
2πVY (�2 − X̄2)

exp

{
−

(
�2 − X̄2 + Ȳ 2

2VY

)}
cosh

(
Ȳ

VY

√
�2 − X̄2

)
, (3.11)

in which � denotes the unit step. Now there are two new natural parameters and a new natural
temporary spacing variable:

ξ1 ≡ X̄√
VY

= √
αξ, η1 ≡ Ȳ√

VY

= √
αη, D1 ≡ �√

VY

= √
αD. (3.12)

The mean spacing is

D̄1(ξ1, η1) =
√

2

π
exp

(
−1

2
η2

1

) ∫ ∞

0
dτ

√
τ 2 + ξ 2

1 exp

(
−1

2
τ 2

)
cosh(τη1)

≈
√

2

π
+ ξ 2

1 + η2
1, (3.13)

in which the approximation is exact for ξ 1 = η1 = 0 and as ξ1 → ∞ or η1 → ∞, and the
error never exceeds 9%. The spacing distribution is (in an obvious notation)

P(S; 0, ξ1, η1) = �(S − |ξ1|/D̄1(ξ1, η1))2SD̄1(ξ1, η1)
2√

2π(S2D̄1(ξ1, η1)2 − ξ 2
1 )

× exp

{
−1

2
(S2D̄1(ξ1, η1)

2 − ξ 2
1 + η2

1)

}
cosh

(
η1

√
S2D̄1(ξ1, η1)2 − ξ 2

1

)
.

(3.14)
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Figure 4. Spacing distribution P(S; 0, ξ1, η1) (equations (3.12)–(3.14)), for the indicated values
of {ξ1, η1}.

Figure 4 shows the variety of spacing distributions that can be generated by different choices
of the parameters ξ 1 and η1. The distributions possess singularities at Sc = ξ 1/D1(ξ 1, η1), with

Sc ≈ ξ1
/√

ξ 2
1 + η2

1 for large ξ 1 or η1. In addition, there are maxima close to S = Sc

√
1 + η2

1

/
ξ 2

1 ;
these maxima get larger and narrower as ξ 1 or η1 increase, leading in the limit to the rigid
spectrum distribution δ(S−1) (cf (3.10)).

Case D. |ξ | and/or |η| � 1

This corresponds to the two means being much greater than the variances (see figure 1). Then
we expect the scaled spacings D (equation (2.5)) to be concentrated near ξ 2 + η2. In the
integral (2.9), the exponent is a rapidly varying function of θ , whose stationary point is close
to θ = arctan(η/ξ ). Straightforward but tedious algebra then leads to the spacing distribution

P(S;α, ξ, η) ≈ (ξ 2 + η2)√
2π

(
αξ 2 + η2

α

) exp

{
− (ξ 2 + η2)2(S − 1)2

2
(
αξ 2 + η2

α

)
}

if ξ 2 + η2 � 1.

(3.15)

This approximation is a Gaussian with rms width√(
αξ 2 + η2

α

)
(ξ 2 + η2)

, (3.16)

getting narrower as ξ 2 + η2 increases, again leading to the limiting rigid spectrum distribution
δ(S−1).
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4. Unfoldings

The normalization we have used—demanding that the mean spacing S̄ = 1—looks different
from the usual unfolding procedure [13], in which S = �d(λ), where d(λ) is the mean
eigenvalue density for eigenvalues near λ. But the usual procedure is intended to apply to
large matrices, where d(λ) varies very slowly on the scale of the spacings �, so the unfolding is
equivalent to the requirement S̄ = 1. By contrast, in our 2 × 2 case, d(λ) varies considerably
on the scale �, so the usual procedure (which involves λ) is ambiguous. Moreover, it is
superflous, because we can impose S̄ = 1 directly. Nevertheless, it is interesting to explore
unfolding, because some of the resulting distributions are unexpected.

The eigenvalues of the matrix (2.1) are

λ± = 1
2 (T ± R), (4.1)

where R ≡
√

X2 + Y 2. Then the mean level density is

d(λ) =
∫ ∞

−∞
dT P (T )

∫ ∞

−∞
dXP (X)

∫ ∞

−∞
dYP (Y )

×
[
δ

(
λ − 1

2
(T − R)

)
+ δ

(
λ − 1

2
(T + R)

)]
. (4.2)

Noting that |λ − T/2| = �/2, the density can be expressed in terms of the spacing distribution
(2.4) before scaling, smoothed by the distribution of the trace T:

d (λ) = 2
∫ ∞

−∞
d� P (T = � + 2λ) P (|�|) . (4.3)

The associated level counting function,

N (λ) =
∫ λ

−∞
dλ′d

(
λ′), (4.4)

increases from 0 to 2 as λ increases from −∞ to +∞. A natural and convenient definition of
the unfolded levels (though not the only possibility) is

ε± ≡ N (λ±) , (4.5)

giving the local unfolded spacing σ as a function of the spacing � before unfolding and the
mean eigenvalue position T/2:

σ (�; T ) = ε+ − ε− =
∫ 1

2 (T +�)

1
2 (T −�)

dλd (λ). (4.6)

As � increases from −∞ to +∞ with T fixed, σ increases monotonically from 0 to 2.
Therefore, the function σ can be inverted to give �(σ ; T), leading to the desired distribution
of the local unfolded spacings, depending on T as well as σ :

P(σ ; T ) = P(�(σ ; T ))

∣∣∣∣d�(σ ; T )

dσ

∣∣∣∣
= 2P(�(σ ; T ))

d
(

1
2 (T + �(σ ; T ))

)
+ d

(
1
2 (T − �(σ ; T ))

) . (4.7)

This distribution vanishes outside the interval 0 < σ < 2.
The case of traceless matrices (T = 0) is particularly interesting. The distribution in (4.3)

is P(T ) = δ(T ) and the level density is just the spacing distribution

d(λ) = 2P(� = 2|λ|), (4.8)

8
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Figure 5. Level density (4.8) for the indicated values of the variance VT of the trace T in (2.1).

which vanishes at λ = 0 because of level repulsion. Then the denominator in (4.7) cancels the
numerator, and the spacing distribution is simply a constant:

P(σ ; T = 0) = {
1
2 if 0 < σ < 2, 0 if σ > 2

}
. (4.9)

This unexpected result holds for any traceless 2 × 2 matrices; the elements X and Y need not
be Gauss-distributed, and may be correlated.

For matrices that are not traceless, we can take the distribution of T to be Gaussian with
variance VT and zero mean (a non-zero mean is trivially accommodated by a shift in λ). For
X and Y it will suffice to consider the simplest case X̄ = Ȳ = 0, VX = VY = 1, that is
ξ = η = 0, α = 1 in the notation of section 2, for which the spacing distribution is just the
Wigner surmise (3.3). Then the level density (4.3) is

d(λ, VT ) = 2

√
2VT

π

exp(−2λ2/VT )

(1 + VT )
+

4λ

(1 + VT )3/2

√
2λ

× exp

(
− 2λ2

1 + VT

)
Erf

(
λ

√
2

VT (1 + VT )

)
. (4.10)

Figure 5 illustrates how the density gets smoothed and broadened as VT increases from
zero.

The unfolded local spacings are, from (4.6),

σ(�; T , VT ) = Erf

(
� − T√

2VT

)
+ Erf

(
� + T√

2VT

)

− 1√
2

(
Erf

(
� − T√

2VT (1 + VT )

)
exp

(
− (� − T )2

2(1 + VT )

)

+ Erf

(
� + T√

2VT (1 + VT )

)
exp

(
− (� + T )2

2 (1 + VT )

))
. (4.11)

Figures 6–8 show the corresponding local unfolded spacing distributions (4.7) for different
values of the mean eigenvalue T/2 and variance VT. It is clear that for these 2 × 2 matrices
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Figure 6. Unfolded local spacing distribution (4.7) for variance VT = 0.1 and (a) T = 0, (b) T =
0.7, (c) T = 2, (d) T = 2.2, (e) T = 2.5, (f ) T = 3.
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Figure 7. As figure 6, for VT = 0.5 and (a) T = 0, (b) T = 1, (c) T = 2, (d) T = 2.5, (e) T = 3,
(f ) T = 3.5.

unfolding has introduced unnecessary complication, even in this simplest case where the direct
averaging gives the unique Wigner surmise, independently of the distribution of T.
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Figure 8. As figure 6, for VT = 1 and (a) T = 0, (b) T = 2, (c) T = 3, (d) T = 4.

The complication can be reduced by averaging the local spacing distributions (4.7) over
T, giving

P(σ ;VT ) ≡
∫ ∞

0
dT P (σ ; T , V ) =

√
2

πVT

∫ ∞

0
dT

× �(σ ; T , VT ) exp
(− 1

2

(
T 2

VT
+ �2(σ ; T , VT )

))
[
d
(

1
2 (T + �(σ ; T , VT )), VT

)
+ d

(
1
2 (T − �(σ ; T , VT )), VT

)] . (4.12)

But, as figure 9 illustrates, the transition from the uniform distribution for VT = 0 as VT

increases still generates a variety of distributions. And for VT = 1 (figure 9(d)), for which
the distribution of matrix elements in (2.1) is the GOE, the unfolded distribution still differs
substantially from the Wigner surmise that is such a good model for larger matrices.

It would be easy to evaluate (4.7) for matrices in the generalized ensembles considered in
sections 2 and 3. This would augment the parameter cube by the additional parameters T and
VT and further complication as in the simplest case considered above.

5. Discussion

Of the six possible parameters labelling the general Gaussian statistics of 2 × 2 matrices—
namely the means and variances of T, X and Y in (2.1)—only three—namely ξ , η and α,
defined in (2.5)—are required to encompass all the spacing distributions. It is clear that
this parameter family includes a rich variety of spacing distributions, in addition to the
familiar stationary Wigner, Poisson and rigid distributions. Figures 2–4 illustrate this for
the special cases considered in section 3, corresponding to points on the boundary of the
parameter cube. Computations for points in the interior of the cube show similar spacing
distributions. Particular single-parameter paths through the full parameter space have been
found to be convenient models for wide classes of physical systems [26–29], though of course
the properties of each ensemble are independent of whatever path is chosen to reach it.
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Figure 9. Average (4.10) of the local spacing distributions (4.7), for (a) VT = 0.001, (b) VT = 0.1,
(c) VT = 0.5, (c) VT = 1. In (d) the dashed curve gives the Wigner surmise σ exp(− 1

2 σ 2).

Some of the P(S) pictures appear to exhibit stronger-than-linear level replusion, and this
is genuine in case C when ξ 1 > 0. Otherwise, the appearance of repulsion is illusory, for
equation (2.9) shows that there is almost always linear repulsion, given precisely by

P(S;α, ξ, η) → SD̄(α, ξ, η)2 exp

(
−

(
ξ 2

2α
+

η2α

2

))
as S → 0. (5.1)

In some cases, the coefficient is very small, generating the illusion of much stronger repulsion.
As discussed in section 4, the unfolding procedure employed to generate fluctuation

statistics in larger matrices, whose purpose is to ensure that the mean spacing is unity,
is unnecessary in the 2 × 2 case where this normalization can be implemented directly.
Moreover, as figures 6–9 illustrate, unfolding for 2 × 2 matrices generates a variety of spacing
distributions, even for the simplest case ξ = η = 0, VX = VY = 1; none of these distributions
reproduces the Wigner surmise (3.3).

The family of generalized ensembles considered here is the simplest. Further
generalization, to 2 × 2 complex Hermitian ensembles, or to non-Hermitian ensembles,
is straightforward but of course involves more parameters.
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